Features

- Single Supply Voltage Range, 2.7V to 3.6V
- Single Supply for Read and Write
- Fast Read Access Time 90 ns
- Internal Program Control and Timer
- 8K Bytes Boot Block with Lockout
- Fast Erase Cycle Time 10 Seconds
- Byte-by-byte Programming 30 μs/Byte Typical
- Hardware Data Protection
- DATA Polling for End of Program Detection
- Low Power Dissipation
 - 25 mA Active Current
 - 50 µA CMOS Standby Current
- Typical 10,000 Write Cycles
- Green (Pb/Halide-free) Packaging Option

Description

The AT49BV512 is a 3-volt only, 512K Flash memories organized as 65,536 words of 8 bits each. Manufactured with Atmel's advanced nonvolatile CMOS technology, the devices offer access times to 90 ns with power dissipation of just 90 mW over the commercial temperature range. When the devices are deselected, the CMOS standby current is less than 50 μA .

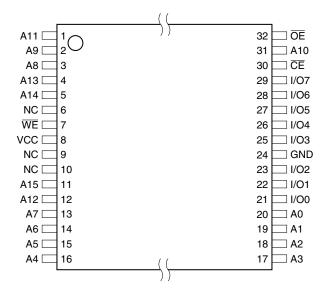
To allow for simple in-system reprogrammability, the AT49BV512 does not require high input voltages for programming. Three-volt only commands determine the read and programming operation of the device. Reading data out of the device is similar to reading from an EPROM. Reprogramming the AT49BV512 is performed by erasing the entire 1 megabit of memory and then programming on a byte-by-byte basis. The typical byte programming time is a fast 30 μ s. The end of a program cycle can be optionally detected by the \overline{DATA} polling feature. Once the end of a byte program cycle has been detected, a new access for a read or program can begin. The typical number of program and erase cycles is in excess of 10,000 cycles.

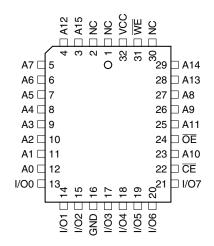
The optional 8K bytes boot block section includes a reprogramming write lock out feature to provide data integrity. The boot sector is designed to contain user secure code, and when the feature is enabled, the boot sector is permanently protected from being reprogrammed.

512K (64K x 8) Single 2.7-volt Battery-Voltage Flash Memory

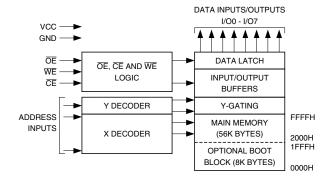
AT49BV512

Not Recommended for New Design




2. Pin Configurations

Pin Name	Function
A0 - A15	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
1/00 - 1/07	Data Inputs/Outputs
NC	No Connect


2.1 32VSOP/32TSOP (Type 1) Top View

2.2 32PLCC Top View

3. Block Diagram

4. Device Operation

4.1 Read

The AT49BV512 is accessed like an EPROM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual-line control gives designers flexibility in preventing bus contention.

4.2 Erasure

Before a byte can be reprogrammed, the 64K bytes memory array (or 56K bytes if the boot block featured is used) must be erased. The erased state of the memory bits is a logical "1". The entire device can be erased at one time by using a 6-byte software code. The software chip erase code consists of 6-byte load commands to specific address locations with a specific data pattern (please refer to the Chip Erase Cycle Waveforms).

After the software chip erase has been initiated, the device will internally time the erase operation so that no external clocks are required. The maximum time needed to erase the whole chip is $t_{\rm EC}$. If the boot block lockout feature has been enabled, the data in the boot sector will not be erased.

4.3 Byte Programming

Once the memory array is erased, the device is programmed (to a logical "0") on a byte-by-byte basis. Please note that a data "0" cannot be programmed back to a "1"; only erase operations can convert "0"s to "1"s. Programming is accomplished via the internal device command register and is a 4 bus cycle operation (please refer to the Command Definitions table). The device will automatically generate the required internal program pulses.

The program cycle has addresses latched on the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CE}}$, whichever occurs last, and the data latched on the rising edge of $\overline{\text{WE}}$ or $\overline{\text{CE}}$, whichever occurs first. Programming is completed after the specified t_{BP} cycle time. The $\overline{\text{DATA}}$ polling feature may also be used to indicate the end of a program cycle.

4.4 Boot Block Programming Lockout

The device has one designated block that has a programming lockout feature. This feature prevents programming of data in the designated block once the feature has been enabled. The size of the block is 8K bytes. This block, referred to as the boot block, can contain secure code that is used to bring up the system. Enabling the lockout feature will allow the boot code to stay in the device while data in the rest of the device is updated. This feature does not have

to be activated; the boot block's usage as a write protected region is optional to the user. The address range of the boot block is 0000H to 1FFFH.

Once the feature is enabled, the data in the boot block can no longer be erased or programmed. Data in the main memory block can still be changed through the regular programming method. To activate the lockout feature, a series of six program commands to specific addresses with specific data must be performed. Please refer to the "Command Definition Table" on page 5.

4.4.1 Boot Block Lockout Detection

A software method is available to determine if programming of the boot block section is locked out. When the device is in the software product identification mode (see Software Product Identification Entry/Exit sections on page 12) a read from address location 00002H will show if programming the boot block is locked out. If the data on I/O0 is low, the boot block can be programmed; if the data on I/O0 is high, the program lockout feature has been activated and the block cannot be programmed. The software product identification code should be used to return to standard operation.

4.5 Product Identification

The product identification mode identifies the device and manufacturer as Atmel. It may be accessed by hardware or software operation. The hardware operation mode can be used by an external programmer to identify the correct programming algorithm for the Atmel product.

For details, see "Operating Modes" on page 6 (for hardware operation) or Software Product Identification Entry/Exit sections on page 12. The manufacturer and device code is the same for both modes.

4.6 Data Polling

The AT49BV512 features \overline{DATA} polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. \overline{DATA} polling may begin at any time during the program cycle.

4.7 Toggle Bit

In addition to DATA polling the AT49BV512 provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during a program cycle.

4.8 Hardware Data Protection

Hardware features protect against inadvertent programs to the AT49BV512 in the following ways: (a) V_{CC} sense: if V_{CC} is below 1.8V (typical), the program function is inhibited. (b) Program inhibit: holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (c) Noise filter: Pulses of less than 15 ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a program cycle.

4.9 Input Levels

While operating with a 2.7V to 3.6V power supply, the address inputs and control inputs (\overline{OE} , \overline{CE} and \overline{WE}) may be driven from 0 to 5.5V without adversely affecting the operation of the device. The I/O lines can only be driven from 0 to V_{CC} + 0.6V.

4 AT49BV512

5. Command Definition Table

Command	Bus		Bus cle		Bus cle		Bus cle		Bus cle		Bus cle		Bus cle
Sequence	Cycles	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read	1	Addr	D _{OUT}										
Chip Erase	6	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555	10
Byte Program	4	5555	AA	2AAA	55	5555	A0	Addr	D _{IN}				
Boot Block Lockout ⁽¹⁾	6	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555	40
Product ID Entry	3	5555	AA	2AAA	55	5555	90						
Product ID Exit ⁽²⁾	3	5555	AA	2AAA	55	5555	F0						
Product ID Exit ⁽²⁾	1	xxxx	F0										

Notes: 1. The 8K byte boot sector has the address range 0000H to 1FFFH.

6. Absolute Maximum Ratings*

Temperature Und	er Bias55°C to +125°C
Storage Tempera	ture65°C to +150°C
All Input Voltages (including NC Pinswith Respect to G	s) round0.6V to +6.25V
All Output Voltage with Respect to G	es round0.6V to V _{CC} + 0.6V
Voltage on OE with Respect to G	round0.6V to +13.5V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{2.} Either one of the Product ID exit commands can be used.

7. DC and AC Operating Range

		AT49BV512-90	AT49BV512-12
Operating Temperature (Cose)	Com.		0°C - 70°C
Operating Temperature (Case)	Ind.	-40°C - 85°C	
V _{CC} Power Supply		2.7V to 3.6V	2.7V to 3.6V

8. Operating Modes

Mode	CE	ŌĒ	WE	Ai	I/O
Read	V _{IL}	V _{IL}	V _{IH}	Ai	D _{OUT}
Program ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	Ai	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	х	X	High Z
Program Inhibit	Х	Х	V _{IH}		
Program Inhibit	Х	V _{IL}	Х		
Output Disable	Х	V _{IH}	х		High Z
Product Identification					
Hawahirawa		V		A1 - A15 = V_{IL} , A9 = V_{H} , (3), A0 = V_{IL}	Manufacturer Code ⁽⁴⁾
Hardware	V _{IL}	V _{IL}	V _{IH}	A1 - A15 = V _{IL} , A9 = V _H , (3), A0 = V _{IH}	Device Code ⁽⁴⁾
Software ⁽⁵⁾				A0 = V _{IL} , A1 - A15 = V _{IL}	Manufacturer Code ⁽⁴⁾
Software (**)				A0 = V _{IH} , A1 - A15 = V _{IL}	Device Code ⁽⁴⁾

Notes: 1. X can be V_{IL} or V_{IH}.

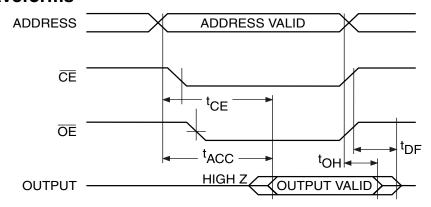
2. Refer to AC Programming Waveforms.

3. $V_H = 12.0V \pm 0.5V$.

4. Manufacturer Code: 1FH, Device Code: 03H.

5. See details under Software Product Identification Entry/Exit sections on page 12.

9. DC Characteristics

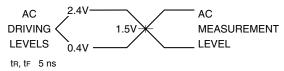

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	V _{IN} = 0V to V _{CC}		10	μА
I _{LO}	Output Leakage Current	$V_{I/O} = 0V \text{ to } V_{CC}$		10	μA
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = V_{\text{CC}} - 0.3V \text{ to } V_{\text{CC}}$		50	μA
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}}$ = 2.0V to V _{CC}		1	mA
I _{CC} ⁽¹⁾	V _{CC} Active Current	f = 5 MHz; I _{OUT} = 0 mA		25	mA
V _{IL}	Input Low Voltage			0.6	V
V _{IH}	Input High Voltage		2.0		V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.45	V
V _{OH}	Output High Voltage	$I_{OH} = -100 \ \mu A; \ V_{CC} = 3.0 V$	2.4		V

Note: 1. In the erase mode, I_{CC} is 50 mA.

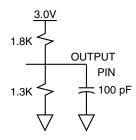
10. AC Read Characteristics

		AT49B	AT49BV512-90 AT49BV5		/512-12	
Symbol	Parameter	Min	Max	Min	Max	Units
t _{ACC}	Address to Output Delay		90		120	ns
t _{CE} (1)	CE to Output Delay		90		120	ns
t _{OE} (2)	OE to Output Delay	0	40	0	50	ns
t _{DF} (3)(4)	CE or OE to Output Float	0	25	0	30	ns
t _{OH}	Output Hold from OE, CE or Address, whichever occurred first	0		0		ns

11. AC Read Waveforms⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾



Notes: 1. \overline{CE} may be delayed up to t_{ACC} - t_{CE} after the address transition without impact on t_{ACC} .


- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} .
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (CL 5 pF).
- 4. This parameter is characterized and is not 100% tested.

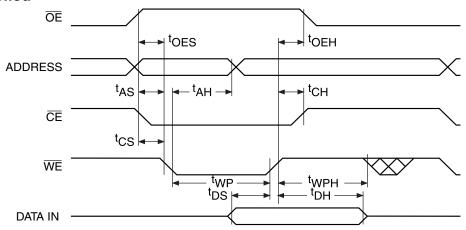
12. Input Test Waveforms and Measurement Level

13. Output Test Load

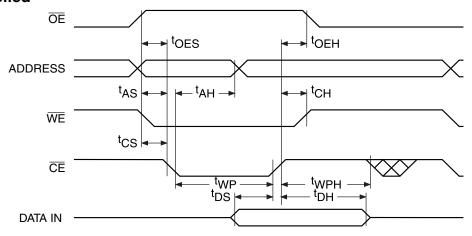
14. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V


Note: 1. This parameter is characterized and is not 100% tested.

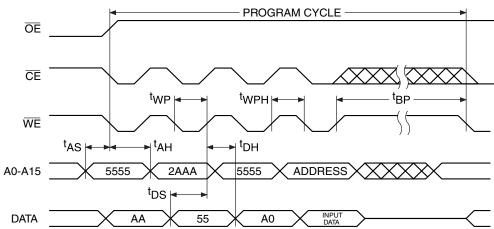
15. AC Byte Load Characteristics

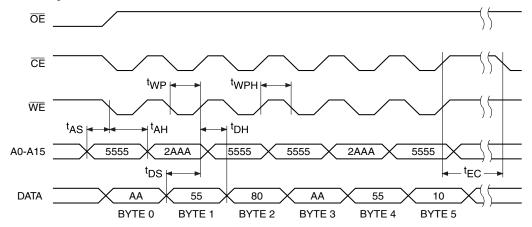

Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Set-up Time	0		ns
t _{AH}	Address Hold Time	100		ns
t _{CS}	Chip Select Set-up Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (WE or CE)	200		ns
t _{DS}	Data Set-up Time	100		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns
t _{WPH}	Write Pulse Width High	200		ns

16. AC Byte Load Waveforms

16.1 WE Controlled

16.2 **CE** Controlled



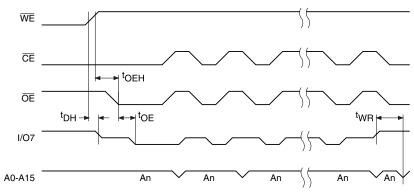

17. Program Cycle Characteristics

Symbol	Parameter	Min	Тур	Max	Units
t _{BP}	Byte Programming Time		30		μs
t _{AS}	Address Set-up Time	0			ns
t _{AH}	Address Hold Time	100			ns
t _{DS}	Data Set-up Time	100			ns
t _{DH}	Data Hold Time	0			ns
t _{WP}	Write Pulse Width	200			ns
t _{WPH}	Write Pulse Width High	200			ns
t _{EC}	Erase Cycle Time			10	seconds

18. Program Cycle Waveforms

19. Chip Erase Cycle Waveforms

Note: \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

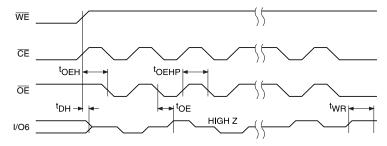

20. Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	0			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	$\overline{\sf OE}$ to Output Delay ⁽²⁾				ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See t_{OE} spec in AC Read Characteristics.

21. Data Polling Waveforms

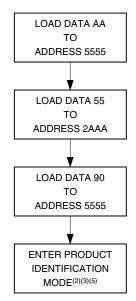

22. Toggle Bit Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	0			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	\overline{OE} to Output Delay ⁽²⁾				ns
t _{OEHP}	OE High Pulse	150			ns
t _{WR}	Write Recovery Time	0			ns

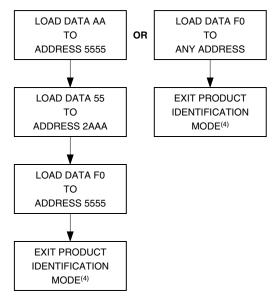
Notes: 1. These parameters are characterized and not 100% tested.

2. See t_{OE} spec in AC Read Characteristics.

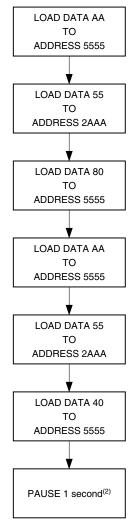
23. Toggle Bit Waveforms⁽¹⁾⁽²⁾⁽³⁾


Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit. The t_{OEHP} specification must be met by the toggling input(s).

- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.



24. Software Product Identification Entry⁽¹⁾



25. Software Product Identification Exit⁽¹⁾

- Notes: 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
 - 2. $A1 A15 = V_{IL}$. Manufacture Code is read for $A0 = V_{IL}$; Device Code is read for $A0 = V_{IH}$.
 - 3. The device does note remain in identification mode if powered down.
 - 4. The device returns to standard operation mode.
 - 5. Manufacturers Code: 1FH Device Code: 03H.

26. Boot Block Lockout Feature **Enable Algorithm**⁽¹⁾

Notes: 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex).

2. Boot block lockout feature enabled.

27. Ordering Information

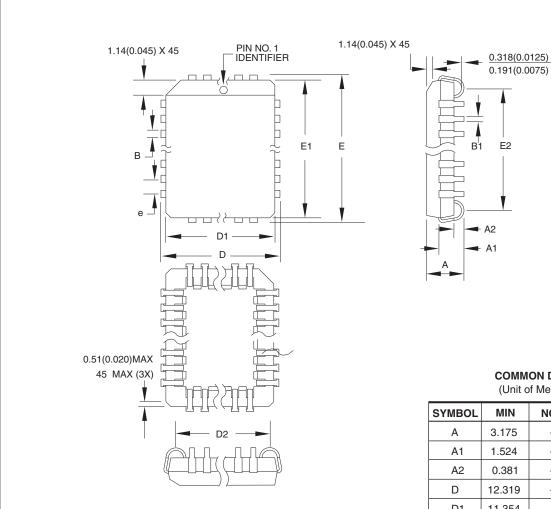
27.1 Standard Package

t _{ACC}	I _{CC} (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	25	0.05	AT49BV512-12JC	32J	Commercial (0°C - 70°C)

27.2 Green Package (Pb/Halide-free)

t _{ACC}	I _{cc} (mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
			AT49BV512-90JU	32J	Industrial
90	25	0.05	AT49BV512-90TU	32T	
			AT49BV512-90VU	32V	(-40°C - 85°C)

Note: 1. The AT49BV512 has as optional boot block feature. The part number shown in the Ordering Information table is for devices with the boot block in the lower address range (i.e., 0000H to 1FFFH). Users requiring boot block protection to be in the higher address range should contact Atmel.


	Package Type
32J	32-lead, Plastic J-leaded Chip Carrier Package (PLCC)
32T 32-lead, Thin Small Outline Package (TSOP) (8 x 20 mm)	
32V	32-lead, Thin Small Outline Package (VSOP) (8 x 14 mm)

28. Packaging Information

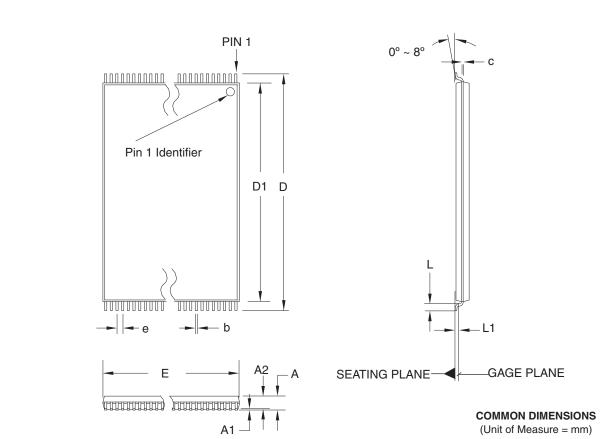
28.1 32J - PLCC

Notes:

- 1. This package conforms to JEDEC reference MS-016, Variation AE.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010 (0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004 (0.102 mm) maximum.

COMMON DIMENSIONS

(Unit of Measure = mm)


	· , , , , , , , , , , , , , , , , , , ,				
SYMBOL	MIN	MIN NOM MAX			
Α	3.175	_	3.556		
A1	1.524	-	2.413		
A2	0.381	_	_		
D	12.319	_	12.573		
D1	11.354	_	11.506	Note 2	
D2	9.906	_	10.922		
Е	14.859	14.859 –			
E1	13.894	_	14.046	Note 2	
E2	12.471	_	13.487		
В	0.660 – 0.330 –		0.813		
B1			0.533		
е	1.270 TYP				

10/04/01

2325 Orchard Parkwa San Jose, CA 95131

IIILE	DRAWING NO.	REV.
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)	32J	В

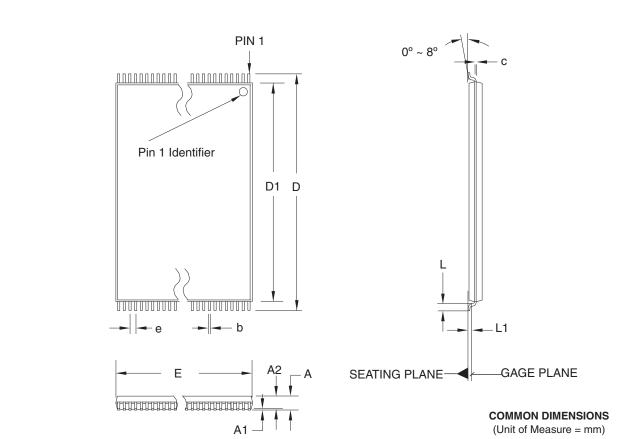
28.2 32T - TSOP

Notes:

- This package conforms to JEDEC reference MO-142, Variation BD.
 Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
- 3. Lead coplanarity is 0.10 mm maximum.

	SYMBOL	MIN	NOM	MAX	NOTE
A2 0.95 1.00 1.05 D 19.80 20.00 20.20 D1 18.30 18.40 18.50 Note 2 E 7.90 8.00 8.10 Note 2 L 0.50 0.60 0.70 L1 0.25 BASIC b 0.17 0.22 0.27	Α	_	_	1.20	
D 19.80 20.00 20.20 D1 18.30 18.40 18.50 Note 2 E 7.90 8.00 8.10 Note 2 L 0.50 0.60 0.70 L1 0.25 BASIC b 0.17 0.22 0.27	A1	0.05	_	0.15	
D1 18.30 18.40 18.50 Note 2 E 7.90 8.00 8.10 Note 2 L 0.50 0.60 0.70 L1 0.25 BASIC b 0.17 0.22 0.27	A2	0.95	1.00	1.05	
E 7.90 8.00 8.10 Note 2 L 0.50 0.60 0.70 L1 0.25 BASIC b 0.17 0.22 0.27	D	19.80	20.00	20.20	
L 0.50 0.60 0.70 L1 0.25 BASIC b 0.17 0.22 0.27	D1				Note 2
L1 0.25 BASIC b 0.17 0.22 0.27	E				Note 2
b 0.17 0.22 0.27	L	0.50	0.60	0.70	
	L1	0.25 BASIC			
c 0.10 – 0.21	b	0.17 0.22 0.27			
	С	0.10	_	0.21	
e 0.50 BASIC	е	0.50 BASIC			

10/18/01


TITLE
32T, 32-lead (8 x 20 mm Package) Plastic Thin Small Outline
Package, Type I (TSOP)

DRAWING NO.	REV.
32T	В

28.3 32V - VSOP

Notes:

- 1. This package conforms to JEDEC reference MO-142, Variation BA.
- 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
- 3. Lead coplanarity is 0.10 mm maximum.

	· · · · · · · · · · · · · · · · · · ·			
SYMBOL	MIN	MIN NOM MAX		
Α	_	1.20		
A1	0.05	0.05 – 0.15		
A2	0.95 1.00 1.05			
D	13.80 14.00 14.20			
D1	12.30 12.40 12.50 7.90 8.00 8.10			Note 2
Е				Note 2
L	0.50	0.50 0.60 0.70		
L1	0.25 BASIC			
b	0.17 0.22 0.27			
С	0.10 – 0.21			
е	0.50 BASIC			

10/18/01

l		TITLE	DRAWING NO.	REV.
AIMEL	2325 Orchard Parkway San Jose, CA 95131	32V , 32-lead (8 x 14 mm Package) Plastic Thin Small Outline Package, Type I (VSOP)	32V	В

29. Revision History

Revision No.	History
Revision F – August 2004	 Added a 55 ns speed option and removed the 90, 120, and 150 ns speed options for the die shrink redesign. The PDIP package was also eliminated. The die shrink redesign will have a marketing revision letter "A" marked after the date code on the topside of the device.
Revision G – Oct. 2005	 Added 120 ns PLCC commercial option. Added 90 ns Green option. Removed 55 ns speed option.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602

44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Chevenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

